Abstract

Abstract Based on the recent papers, two distributions for the total claims amount (loss cost) are considered: compound Poisson-gamma and Tweedie. Each is used as an underlying distribution in the Bonus-Malus Scale (BMS) model. The BMS model links the premium of an insurance contract to a function of the insurance experience of the related policy. In other words, the idea is to model the increase and the decrease in premiums for insureds who do or do not file claims. We applied our approach to a sample of data from a major insurance company in Canada. Data fit and predictability were analyzed. We showed that the studied models are exciting alternatives to consider from a practical point of view, and that predictive ratemaking models can address some important practical considerations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.