Abstract

By identifying individuals with low peak bone mass (PBM) at young age, early targeted interventions to reduce future fracture risk could be possible. Peripheral quantitative computed tomography (pQCT) is in many ways superior to the gold standard dual-energy X-ray absorptiometry (DXA), as cortical and trabecular compartments as well as the volumetric density and bone structure can be examined separately. Because each of these traits contributes independently to bone strength, it is probable that pQCT provides an even better fracture risk estimation than DXA. Currently, the clinical applications of pQCT are limited partly because comprehensive normative pQCT data, especially in young men, are not readily available. We therefore set up a study in young men with the following objectives: (1) to identify peak ages in pQCT bone traits with special reference to PBM and peak bone strength; and (2) to provide normative pQCT data. We measured volumetric bone mineral density and structural parameters at ultradistal (trabecular bone) and diaphyseal radius and tibia (cortical bone) by pQCT scans (Stratec XCT2000®; Stratec Medizintechnik GmbH, Pforzheim, Germany) in a population-based age-stratified sample of 1083 men aged 18–28 yr residing in greater Malmö, Sweden. Group differences in 1-yr classes were evaluated by analysis of variance. We found similar bone traits in age groups at ultradistal sites whereas most bone traits at diaphyseal sites were higher with higher ages, however with different increment patterns depending on the specific trait. In Swedish young adult men, we found that different bone traits continued to change after age 18, but at different rates, indicating that peak areal bone mineral density (as measured by DXA) and peak bone strength may be reached at different ages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call