Abstract
Today, osteoporosis has become a major global health issues. The World Health Organization declares that 320 billion people have osteoporosis now, and more than 1.5 billion osteoporosis traumatic events occur every year. Bones become fragile and fracture risk is high; thus, it is crucial to choose the right biodegradable implants in order to minimize reoperations of patients with systemic osteoporosis. This investigation aimed to carry out a morphological assessment of the state of bone tissue with osteosynthesis of a femoral fracture in rats, using a model of osteoporosis with the installation of magnesium alloy implants coated with hydroxyapatite and sealed with polytetrafluoroethylene. According to this study, the indicators of angiogenesis and bone formation in experimental animals were significantly higher when an implant coated with hydroxyapatite sealed with polytetrafluoroethylene was used, compared to an implant coated only with hydroxyapatite and in rats without an implant. Based on the data obtained, it is possible to consider a magnesium implant coated with hydroxyapatite and sealed with polytetrafluoroethylene as a promising material for fracture therapy in patients with reduced bone density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.