Abstract

BackgroundEvidence has shown the clinical usefulness of measuring the metastatic tumor burden of bone for prognostic assessment especially in prostate cancer; quantitative evaluation by dedicated SPECT is difficult due to the lack of attenuation correction (AC) method.We developed a novel method for attenuation correction using bone SPECT emission data (bone SPECT-based segmented attenuation correction; B-SAC) where emission data were virtually segmented into three tissues (i.e., bone, soft tissue, and air). Then, the pixel values in SPECT were replaced by 50 for the virtual soft tissue, and − 1000 for the virtual air. The replaced pixel values for the virtual bone were based on the averaged CT values of the normal vertebrae (B-SACN) or the metastatic bones (B-SACM). Subsequently, the processed SPECT data (i.e., SPECT value) were supposed to realize CT data (i.e., CT value) that were used for B-SAC. The standardized uptake values (SUVs) of 112 metastatic bone tumors in 15 patients with prostate cancer were compared between CTAC with scatter correction (SC) and resolution recovery (RR) and the following reconstruction conditions: B-SACN (+)SC(+)RR(+), B-SACM (+)SC(+)RR(+), uniform AC(UAC)(+)SC(+)RR(+), AC(−)SC(+)RR(+), and no correction (NC).ResultsThe SUVs in the five reconstruction conditions were all correlated with those in CTAC(+)SC(+)RR(+) (p < 0.01), and the correlations between B-SACN or B-SACM and CTAC images were excellent (r > 0.94). Bland-Altman analysis showed that the mean SUV differences between CTAC (+)SC(+)RR(+) and the other five reconstructions were 0.85 ± 2.25 for B-SACN (+)SC(+)RR(+), 1.61 ± 2.36 for B-SACM (+)SC(+)RR(+), 1.54 ± 3.84 for UAC(+)SC(+)RR(+), − 3.12 ± 4.97 for AC(−)SC(+)RR(+), and − 5.96 ± 4.59 for NC. Compared to CTAC(+)SC(+)RR(+), B-SACN (+)SC(+)RR(+) showed a slight but constant overestimation (approximately 17%) of the metastatic tumor burden of bone when the same threshold of metabolic tumor volume was used.ConclusionsThe results of this preliminary study suggest the potential for B-SAC to improve the quantitation of bone metastases in bone SPECT when X-ray CT or transmission CT data are not available. Considering the small but unignorable differences of lesional SUVs between CTAC and B-SAC, SUVs obtained with the current version of B-SAC seem difficult to be directly compared with those obtained with CTAC.

Highlights

  • Evidence has shown the clinical usefulness of measuring the metastatic tumor burden of bone for prognostic assessment especially in prostate cancer; quantitative evaluation by dedicated single-photon emission computed tomography (SPECT) is difficult due to the lack of attenuation correction (AC) method

  • We developed a novel method for attenuation correction using bone SPECT emission data where emission data were virtually segmented into three tissues

  • Compared to CT-based attenuation correction (CTAC)(+)scatter correction (SC)(+)RR(+), B-SACN (+)SC(+)RR(+) showed a slight but constant overestimation of the metastatic tumor burden of bone when the same threshold of metabolic tumor volume was used. The results of this preliminary study suggest the potential for based segmented attenuation correction (B-segmented attenuation correction (SAC)) to improve the quantitation of bone metastases in bone SPECT when X-ray CT or transmission CT data are not available

Read more

Summary

Introduction

Evidence has shown the clinical usefulness of measuring the metastatic tumor burden of bone for prognostic assessment especially in prostate cancer; quantitative evaluation by dedicated SPECT is difficult due to the lack of attenuation correction (AC) method. The standardized uptake values (SUVs) of 112 metastatic bone tumors in 15 patients with prostate cancer were compared between CTAC with scatter correction (SC) and resolution recovery (RR) and the following reconstruction conditions: B-SACN (+)SC(+) RR(+), B-SACM (+)SC(+)RR(+), uniform AC(UAC)(+)SC(+)RR(+), AC(−)SC(+)RR(+), and no correction (NC). A lesion-to-background ratio is generally used to semi-quantify lesional radiotracer uptake on SPECT images, especially in the field of neurology, whereas a very limited number of clinical studies used the semi-quantitative index in bone SPECT [3] because of the difficulty in the standardization of region-of-interest settings.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call