Abstract

In a series of experimental studies, bone formation was analysed around systematically modified titanium implants. In the present study, machined, electropolished and anodically oxidized implants were prepared, surface characterized and inserted in the cortical bone of rabbits (7wks and 12wks). SEM, scanning Auger electron spectroscopy and atomic force microscopy revealed no differences in surface composition but marked differences in oxide thickness, surface topography and roughness. Light microscopic morphology and morphometry showed that all implants were in contact with bone, and had a large proportion of bone within the threads. The smooth, electropolished implants were surrounded by less bone than the machined implants with similar oxide thickness, (4–5 nm) and the anodically oxidized implants with thicker oxides (21 nm and 180 nm, respectively) after 7wks. These studies show that a high degree of bone contact and bone formation can be achieved with titanium implants which are modified with respect to oxide thickness and surface topography. However, it appears that a reduction of surface roughness may influence the rate of bone formation in rabbit cortical bone. Biomaterials (1994) 15, (13) 1062–1074

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.