Abstract

The bone remodeling process occurs through bone formation by osteoblasts and bone resorption by osteoclasts, a process involving the contribution of endocrine and nervous systems. The mechanisms associated to differentiation and proliferation of osteoclasts and osteoblasts are considered a potential therapeutic target for treating some erosive bone diseases. The aim of the present study is to explore the feasibility of generating active osteoclast-like cells from peripheral blood mononuclear cells (PBMCs) following polyethylene glycol (PEG)-induced fusion. PEG-fused PBMCs showed TRAP+-multinucleated cells and bone resorption activity, and were also positive for osteoclast markers such as carbonic anhydrase II, calcitonin receptor, vacuolar ATPase, and cathepsin K, when examined by reverse transcription-polymerase chain reaction, immunochemistry and Western blotting. TRAP expression and bone resorptive activity were higher in whole PEG-fused PBMCs than in separated T lymphocytes, B lymphocytes or monocytes. Both TRAP expression and bone resorptive activity were also higher in osteogenesis imperfecta patients compared to PEG-fused PBMCs from healthy individuals. PEG-induced fusion was more efficient in inducing TRAP and bone resorptive activities than macrophage colony-stimulating factor or dexamethasone treatment. Bone resorptive activity of PEG-fused PMBCs was inhibited by bisphosphonates. Evidence is provided that the use of PEG-based cell fusion is a straightforward and amenable method for studying human osteoclast differentiation and testing new therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call