Abstract

We constructed a bone morphogenetic protein 2 (BMP-2)@Carbon nanotube (CNT) delivery system to explore the feasibility of a nanodrug delivery system in the treatment of osteoporosis (OP). Osteoblasts were cultured and OP mouse models were constructed to evaluate the osteogenesis of nano-BMP-2 in OP therapy. In physicochemical property tests, we found that BMP-2 was effectively loaded into CNT to form nanoparticles (NPs) with a particle size of 100 nm. Additionally, we found that nano-BMP-2 had good stability and could effectively prolong BMP-2 release time. In cellular experiments, we found that nano-BMP-2 could penetrate osteoblasts more effectively than BMP-2 alone, and with the increase of BMP-2 loading, the amount of BMP-2 penetrating osteoblasts increased with an optimal loading of 100 μg. We determined that nano-BMP-2 could increase proliferation activity of osteoblasts to better promote OP repair. In our vivo experiments, we found that nano-BMP-2 was effectively excreted through the kidney and mainly distributed in bone tissue. Moreover, CNT effectively prolonged the half-life of BMP-2 and was safe to introduce through intramuscular injection and did not cause obvious inflammatory reactions. Following treatment, nano-BMP-2 increased body weight, femur weight, and femoral head diameter in OP mouse models. Furthermore, bone trabecular was arranged in a close and orderly fashion and was uniform in thickness in OP mice treated with nano-BMP-2. OP mice had improved bone mineral density, trabecular thickness, trabecular number, and cortical bone thickness in their metaphyseal regions, implying nano-BMP-2 treatment led to improved OP symptoms. Therefore, BMP-2@CNT may be a beneficial choice for treatment of OP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call