Abstract

Octacalcium phosphate (Ca8H2(PO4)6 * 5H2O; OCP) has been advocated to be a precursor of biological apatite crystals in bone and tooth. Recent studies, using physical techniques, showed that OCP is present as a transient phase during biological apatite formation in human dentin, porcine enamel and murine bone. However, there is still a controversy regarding the chemical nature of the first mineral formed in the biominerals. A number of studies have demonstrated that synthetic OCP shows bone regenerative and biodegradable characteristics, rather than other calcium phosphate bone substitute materials, such as hydroxyapatite (Ca10(PO4)6(OH)2; HA) ceramic. It seems likely that synthetic OCP may be an alternative to autogenous bone graft. It is known that OCP contains alternative layers of water molecules and an apatite structure, and that the transition of OCP to HA is likely to be spontaneous and irreversible. The conversion process induces modification of local environment adjacent to OCP surface, including the changes in adsorption of serum proteins and concentration of calcium and inorganic phosphate ions. This article reviews the possible application to bone regeneration by synthetic OCP and the mechanism to enhance bone regeneration in relation to biological mineralization in bone and tooth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.