Abstract

The objective of this study is to enhance the bone induction activity of basic fibroblast growth factor (bFGF) for reconstruction of skull bone defects which has been clinically recognized as almost impossible. For this purpose, we prepared biodegradable hydrogels from gelatin with an isoelectric point of 4.9 which is capable of polyionic complexing with basic bFGF. When implanted in rabbit skull defects of 6 mm in diameter (6 defects per experimental group), the gelatin hydrogels incorporating 100 μg of bFGF promoted bone regeneration at the defect in marked contrast to free bFGF of the same dose, finally closing the bone defects after 12 weeks of implantation as is apparent from histological examination. In dual energy X-ray absorptometry analysis, the bone mineral density at the skull defects enhanced by the hydrogels was significantly higher than that by free bFGF at doses ranging from 2 to 200 μg/defect ( P<0.05). The extent of bone regeneration induced by gelatin hydrogels incorporating 100 μg of bFGF increased with a decrease in their water content. Histological examination indicated that more slowly degrading hydrogels of lower water content prolonged the retention period of osteoblasts in the bone defects. This led to enhanced bone regeneration compared with faster degrading hydrogels of higher water content. It was concluded that this biodegradable hydrogel system was a promising surgical tool to assist self-reconstruction of the skull bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.