Abstract

We examined the bone properties of BXD recombinant inbred (RI) mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n = 16) and DBA/2J (n = 15) and two first filial generations (D2B6F1 and B6D2F1). Strain differences were observed in bone quality and structural properties (P < 0.05) in each bone profile (whole bone, cortical bone, or trabecular bone). It is well known that skeletal phenotypes are largely affected by genetic determinants and genders, such as bone mineral density (BMD). While genetics and gender appear expectedly as the major determinants of bone mass and structure, significant correlations were also observed between femur and tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a) femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b) strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.

Highlights

  • Osteoporosis is recognized as the most common bone disease in the world

  • We conclude that (a) femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b) strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property

  • It is characterized with a reduction in bone mass and an alternation of bone microarchitecture, which have been proved to be the major determinants of bone strength

Read more

Summary

Introduction

Osteoporosis is recognized as the most common bone disease in the world. It is characterized with a reduction in bone mass and an alternation of bone microarchitecture, which have been proved to be the major determinants of bone strength. C3H mice have significantly stronger femurs compared with B6, their lumbar vertebrae are not stronger, but instead they are more brittle. This result indicated that the genes contributing to improved femoral strength have no effect or even negative effect on trabecular bone structure in the spine. There has been no study demonstrating the predictability between long bones

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call