Abstract
Altered bone morphogenic protein (BMP) signaling, independent of BMPR2 mutations, can result in idiopathic pulmonary arterial hypertension (IPAH). Glucose dysregulation can regulate multiple processes in IPAH. However, the role of glucose in BMP antagonist expression in IPAH has not been characterized. We hypothesized that glucose uptake regulates BMP signaling through stimulation of BMP antagonist expression in IPAH. Using human plasma, lung tissue, and primary pulmonary arterial smooth muscle cells (PASMCs), we examined the protein expression of BMP2, BMP-regulated Smads, and Smurf-1 in patients with IPAH and control subjects. Gremlin-1 levels were elevated in patients with IPAH compared with control subjects, whereas expression of BMP2 was not different. We demonstrate increased Smad polyubiquitination in IPAH lung tissue and PASMCs that was further enhanced with proteasomal inhibition. Examination of the Smad ubiquitin-ligase, Smurf-1, showed increased protein expression in IPAH lung tissue and localization in the smooth muscle of the pulmonary artery. Glucose dose dependently increased Smurf-1 protein expression in control PASMCs, whereas Smurf-1 in IPAH PASMCs was increased and sustained. Conversely, phospho-Smad1/5/8 levels were reduced in IPAH compared with control PASMCs at physiological glucose concentrations. Interestingly, high glucose concentrations decreased phosphorylation of Smad1/5/8 in control PASMCs. Blocking glucose uptake had opposing effects in IPAH PASMCs, and inhibition of Smurf-1 activity resulted in partial rescue of Smad1/5/8 activation and cell migration rates. Collectively, these data suggest that BMP signaling can be regulated through BMPR2 mutation-independent mechanisms. Gremlin-1 (synonym: induced-in-high-glucose-2 protein) and Smurf-1 may function to inhibit BMP signaling as a consequence of the glucose dysregulation described in IPAH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of respiratory cell and molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.