Abstract

The purpose of this study is to investigate the convenience of bone morphogenetic protein-6 (BMP-6)-loaded chitosan scaffolds with preosteoblastic cells for bone tissue engineering. MC3T3-E1 cells were seeded into three different groups: chitosan scaffolds, BMP-6-loaded chitosan scaffolds, and chitosan scaffolds with free BMP-6 in culture medium. Tissue-engineered constructs were characterized by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide assay, scanning electron microscopy (SEM), mineralization assay (von Kossa), alkaline phosphatase (ALP) activity, and osteocalcin (OCN) assays. BMP-6-loaded chitosan scaffolds supported proliferation of the MC3T3-E1 mouse osteogenic cells in a similar pattern as the unloaded chitosan scaffolds group and as the chitosan scaffolds with free BMP-6 group. SEM images of the cell-seeded scaffolds revealed significant acceleration of extracellular matrix synthesis in BMP-6-loaded chitosan scaffolds. Both levels of ALP and OCN were higher in BMP-6-loaded chitosan scaffold group compared with the other two groups. In addition, BMP-6-loaded scaffolds showed strong staining in mineralization assays. These findings suggest that BMP-6-loaded chitosan scaffold supports cellular functions of the osteoblastic cells; therefore, this scaffold is considered as a new promising vehicle for bone tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.