Abstract

The development of efficacious bone substitute biomaterials remains a major challenge for research and clinical surgical. Herein, we constructed triple helix recombinant collagen (THRC) -based hydrogels loading bone morphogenetic protein-2 (BMP-2) to stimulate bone regeneration in cranial defects. A series of in situ forming hydrogels, denoted as THRC-oxidized carboxymethylcellulose (OCMC)-N-succinyl-chitosan (NSC) hydrogels, was synthesized via a Schiff base reaction involving OCMC, THRC and NSC. The hydrogels underwent rapid formation under physiological pH and temperature conditions. The composite hydrogel exhibits a network structure characterized by uniform pores, the dimensions of which can be tuned by varying THRC concentrations. The THRC-OCMC-NSC and THRC-OCMC-NSC-BMP2 hydrogels display heightened mechanical strength, substantial biodegradability, and lower swelling properties. The THRC-OCMC-NSC hydrogels show exceptional biocompatibility and bioactivity, accelerating cell proliferation, adhesion, and differentiation. Magnetic resonance imaging, computed tomography and histological analysis of rat cranial defects models revealed that the THRC-OCMC-NSC-BMP2 hydrogels substantially promote new bone formation and expedite bone regeneration. The novel THRC-OCMC-NSC-BMP2 hydrogels emerge as promising candidates for bone substitutes, demonstrating substantial potential in bone repair and regeneration applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call