Abstract

BackgroundBone morphogenetic proteins (BMPs) and transforming growth factor-βs (TGF-βs) are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC) in MC3T3-E1 cells. Connexin 43 (Cx43) has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC.ResultsNorthern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF-β1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane.ConclusionsBMP-2 and TGF-β1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF-β1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells.

Highlights

  • Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1), members of the transforming growth factor-βs (TGF-βs) superfamily, play important roles in bone repair and regeneration [1,2,3,4]

  • Gap junctions are thought to be essential for maintaining skeletal integrity and coordinating repair of osseous tissue by propagating intracellular signals generated in response to soluble factors, such as epidermal growth factor (EGF) and basic fibroblast growth factor, or mechanical stimuli, such as cyclic stretch [15,16,17,18]

  • We reported that Bone morphogenetic proteins (BMPs)-2 or TGF-β1 markedly inhibited gap junctional intercellular communication (GJIC) in the murine-derived MC3T3E1 cell [21]

Read more

Summary

Introduction

Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β1 (TGF-β1), members of the TGF-β superfamily, play important roles in bone repair and regeneration [1,2,3,4]. Gap junctional intercellular communication (GJIC) represents one mechanism of cell-cell communication and has been implicated in the maintenance of intercellular homeostasis and regulation of signals during embryogenesis, differentiation, growth, and regeneration [9,10,11]. Bone morphogenetic proteins (BMPs) and transforming growth factor-βs (TGF-βs) are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC) in MC3T3-E1 cells. Connexin 43 (Cx43) has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. Phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.