Abstract

Bone morphogenetic protein-1 (BMP-1) is a shorter spliced variant of mammalian tolloid (mTld), both of which cleave the C-propeptides of type I procollagen during the synthesis of extracellular matrix collagen fibrils. The fact that BMP-1 and mTld both exhibit procollagen C-proteinase (PCP) activity and that BMP-1 is the smaller variant might indicate that BMP-1 comprises the minimal required sequences for PCP activity. BMP-1 comprises a metalloproteinase domain, three CUB domains, and an epidermal growth factor (EGF)-like domain, which is located between the second and third CUB (complement components C1r/C1s, the sea urchin protein Uegf, and BMP-1) domains. In this study we showed the following. 1) The CUB1 domain is required for secretion of the molecule. Domain swapping experiments, in which CUB1 and other CUB domains were interchanged, resulted in retention of the proteins by cells. Therefore, CUB1 and its location immediately adjacent to the metalloproteinase domain are essential for secretion of the protein. 2) Mutants lacking the EGF-like and CUB3 domains exhibited full C-proteinase activity. In contrast, mutants lacking the CUB2 domain were poor C-proteinases. 3) Further studies showed that Glu-483 on the beta4-beta5 loop of CUB2 is essential for C-proteinase activity of BMP-1. In conclusion, the study showed that the minimal domain structure for PCP activity is considerably shorter than expected and comprises the metalloproteinase domain and the CUB1 and CUB2 domains of BMP-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.