Abstract

Bone cancer is one of the most common tumor types that occurs in bones and their affiliated tissues. The prognosis remains poor due to the limited number of effective therapeutic targets. Downregulation of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) has been observed in human cancer cells and BAMBI reconstitution can inhibit growth and metastasis of human cancer cells. In the present study, a potential mechanism mediated by BAMBI in osteosarcoma cells was investigated. The data demonstrated that BAMBI reconstitution suppressed the cell growth, migration and invasion of the osteosarcoma cell lines SAOS2 and MG63. Alterations to the epithelial-to-mesenchymal transition (EMT) marker expression were observed in BAMBI-treated osteosarcoma SAOS2 and MG63 cells. The apoptosis rate of SAOS2 and MG63 cells induced by cisplatin were increased in BAMBI-treated osteosarcoma SAOS2 and MG63 cells via downregulation of the anti-apoptosis genes P16, P21 and B-cell lymphoma 2. The potential mechanism investigated indicated that BAMBI administration downregulated the transforming growth factor-β (TGF-β) signaling pathway, whilst knockdown of BAMBI upregulated the TGF-β signaling pathway in SAOS2 and MG63 cells. Reconstitution of BAMBI in SAOS2 and MG63 cells resulted in a notable reduction of TGF-β-induced EMT, cell growth, migration and invasion in vitro. In conclusion, the results demonstrated that BAMBI reconstitution inhibited growth and invasiveness of osteosarcoma, as well as promoted the apoptotic sensibility, which indicated that the TGF-β-induced EMT signaling pathway may be regarded as a potential target for osteosarcoma therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call