Abstract

Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and airway wall remodeling, leading to reduced lung function. An association between the bone morphogenetic protein (BMP-6) locus and forced vital capacity has been found in a genome-wide association study. However, the role of BMP-6 in the pathogenesis of COPD remains unknown. The pulmonary expression of BMP-6 was analyzed in patients with COPD and in cigarette smoke (CS)-exposed mice. We evaluated lung function and histology in BMP-6 KO mice at baseline. We exposed BMP-6 KO mice to CS for 4 weeks and measured pulmonary inflammation and iron levels. Pulmonary mRNA levels of BMP-6 were decreased in smokers with and without COPD and in CS-exposed mice. Importantly, BMP-6 expression was lowest in severe COPD. Accordingly, protein levels of BMP-6 were decreased in patients with COPD. Lung function measurements demonstrated a decreased compliance and total lung capacity in BMP-6 KO mice, whereas lung histology was normal. Furthermore, BMP-6 KO mice displayed elevated iron levels and an aggravated CS-induced inflammatory response. These results suggest that BMP-6 is important for normal lung function and that downregulation of BMP-6-as observed in patients with COPD-contributes to pulmonary inflammation after CS exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call