Abstract

Clarifying the mechanisms via which pacemaker- like cells are generated is critical for identifying novel targets for arrhythmia-associated disorders and constructing pacemakers with the ability to adapt to physiological requirements. T-box 18 (Tbx18)+ epicardial progenitor cells (EPCs) have the potential to differentiate into pacemaker cells. Although bone morphogenetic protein 4 (Bmp4) is likely to contribute, its role and regulatory mechanisms in the differentiation of Tbx18+ EPCs into pacemaker-like cells have remained to be fully elucidated. In the present study, the association between Bmp4, GATA binding protein 4 (Gata4) and hyperpolarization- activated cyclic nucleotide gated potassium channel 4 (Hcn4) to regulate NK2 homeobox 5 (Nkx2.5), which is known to be required for the differentiation of Tbx18+ EPCs into pacemaker-like cells, was assessed. Tbx18+ EPCs were isolated from Tbx18:Cre/Rosa26Renhanced yellow fluorescence protein (EYFP) murine embryos at embryonic day 11.5 and divided into the following four treatment groups: Control, Bmp4, Bmp4+LDN193189 (a Bmp inhibitor) and LDN193189. In vitro Bmp4 promoted the expression of Hcn4 in Tbx18+ EPCs via lineage tracing of Tbx18:Cre/Rosa26REYFP mice, which was likely due to upregulation of Gata4 expression. Gata4 knockdown experiments were then performed using the following five treatment groups: Control, control small interfering RNA (siRNA), Bmp4, Bmp4+siRNA targeting Gata4 (siGata4) and siGata4 group. Knockdown of Gata4 caused a downregulation of Hcn4 and an upregulation of Nkx2.5, but had no effect on Bmp4 expression. In conclusion, it was indicated that in Tbx18+ EPCs, the expression of Nkx2.5 was regulated by Bmp4 via Gata4. Taken together, these results provide important information on regulatory networks of pacemaker cell differentiation and may serve as a basis for further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.