Abstract

To test whether bone morphogenetic protein 4 (BMP4) directly regulates differentiation of adult mouse ovary-derived oogonial stem cells (OSCs) in vitro. Animal study. Research laboratory. Adult C57BL/6 female mice. After purification from adult ovaries by fluorescence-activated cell sorting, OSCs were cultured without or with BMP4 in the absence or presence of the BMP4 antagonist, Noggin. Rates of in vitro-derived (IVD) oocyte formation and changes in gene expression were assessed. Cultured OSCs expressed BMP receptor (BMPR) 1A (BMPR1A), BMPR1B, and BMPR2, suggesting that BMP signaling can directly affect OSC function. In agreement with this, BMP4 significantly increased the number of IVD oocytes formed by cultured OSCs in a dose-dependent manner, and this response was inhibited in a dose-dependent fashion by cotreatment with Noggin. Exposure of OSCs to BMP4 was associated with rapid phosphorylation of BMPR-regulated Smad1/5/8 proteins, and this response was followed by increased expression of the meiosis initiation factors, stimulated by retinoic acid gene 8 (Stra8), muscle-segment homeobox 1 (Msx1), and Msx2. In keeping with the IVD oocyte formation data, the ability of BMP4 to activate Smad1/5/8 signaling and meiotic gene expression in OSCs was abolished by cotreatment with Noggin. Engagement of BMP4-mediated signaling in adult mouse ovary-derived OSCs cultured in vitro drives differentiation of these cells into IVD oocytes through Smad1/5/8 activation and transcriptional up-regulation of key meiosis-initiating genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.