Abstract
Placement in baboons of a distal femoral arteriovenous fistula increases shear stress through aortoiliac polytetrafluoroethylene (PTFE) grafts and induces regression of a preformed neointima. Atrophy of the neointima might be controlled by shear stress-induced genes, including the bone morphogenetic proteins (BMPs). We have investigated the expression and function of BMPs 2, 4, and 5 in the graft neointima and in cultured baboon smooth muscle cells (SMCs). Baboons received bilateral aortoiliac PTFE grafts and 8 weeks later, a unilateral femoral arteriovenous fistula. Quantitative polymerase chain reaction showed that high shear stress increased BMP2, 4, and 5 messenger RNA (mRNA) in graft intima between 1 and 7 days, while noggin (a BMP inhibitor) mRNA was decreased. BMP4 most potently (60% inhibition) inhibited platelet-derived growth factor-stimulated SMC proliferation compared with BMP2 and BMP5 (31% and 26%, respectively). BMP4 also increased SMC death by 190% +/- 10%. Noggin reversed the antiproliferative and proapoptotic effects of BMP4. Finally, Western blotting confirmed BMP4 protein upregulation by high shear stress at 4 days. BMP4 expression demonstrated by in situ hybridization was confined to endothelial cells. Increased BMPs (particularly BMP4) coupled with decreased noggin may promote high shear stress-mediated graft neointimal atrophy by inhibiting SMC proliferation and increasing SMC death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.