Abstract
Bone morphogenetic proteins (BMP) 4 and 7 have important roles in neuronal differentiation and cortical development in the murine brain. However BMP4 and BMP7 expression and functions in the developing human brain are unknown. In this study, frozen tissue human fetal leptomeninges, formalin-fixed tissue and primary fetal leptomeningeal cell cultures were studied.By western blot, BMP4, BMP7 and BMPRIa were demonstrated in 15, 17 20, 23 week (wk) human leptomeninges. BMP receptor II was detected at 15 and 17wks. Immunohistochemically, BMP4 immunoreactivity was also found in 20 to 39wk human leptomeninges.BMP4 significantly reduced basal DNA synthesis at 22wks. BMP7 100 and 300ng/ml stimulated basal DNA synthesis in the 15, 17 and 22wk leptomeninges.BMP4 and BMP7 increased phosphorylation of SMAD-1, 5, 8 in most cells and had no effect on phosphorylation of p-38MAPK, or p44/42MAPK.BMP4 and BMP7 produced a decrease in VEGF RNA expression in 2 of 4 leptomeninges. BMP4 and BMP7 increased VEGFR1 RNA in 2 or 3 of 4 leptomeningeal cultures respectively. BMP4 produced a decrease in VEGFR2 RNA in 2 of 4 and BMP7 in 3 of 4 while BMP7 reduced VEGFR2 protein in the leptomeninges.The findings show, for the first time, BMP4, BMP7 and receptors are expressed and active in the human fetal leptomeninges. They suggest these BMPs influence vascular development in this tissue by regulating VEGF and its receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.