Abstract

The cell-surface low-density lipoprotein receptor (LDLR) internalizes low-density lipoprotein (LDL) by receptor-mediated endocytosis and plays a key role in the regulation of plasma cholesterol levels. The ligand-binding domain of the LDLR contains seven ligand-binding repeats of approximately 40 residues each. Between ligand-binding repeats 4 and 5, there is a 10-residue linker region that is subject to enzymatic cleavage. The cleaved LDLR is unable to bind LDL. In this study, we have screened a series of enzyme inhibitors in order to identify the enzyme that cleaves the linker region. These studies have identified bone morphogenetic protein 1 (BMP1) as being the cleavage enzyme. This conclusion is based upon the use of the specific BMP1 inhibitor UK 383367, silencing of the BMP1 gene by the use of siRNA or CRISPR/Cas9 technology and overexpression of wild-type BMP1 or the loss-of-function mutant E214A-BMP1. We have also shown that the propeptide of BMP1 has to be cleaved at RSRR120↓ by furin-like proprotein convertases for BMP1 to have an activity towards the LDLR. Targeting BMP1 could represent a novel strategy to increase the number of functioning LDLRs in order to lower plasma LDL cholesterol levels. However, a concern by using BMP1 inhibitors as cholesterol-lowering drugs could be the risk of side effects based on the important role of BMP1 in collagen assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.