Abstract

PurposeThe purpose of this study was to determine whether trabecular bone mineralization differed in adults with type 2 diabetes compared to adults without type 2 diabetes. MethodsProximal femur specimens were obtained following a total hip replacement procedure from men and women ≥65years of age with and without type 2 diabetes. A scanning electron microscope was used for quantitative backscattered electron imaging (qBEI) analysis of trabecular bone samples from the femoral neck. Gray scale images (pixel size=5.6μm2) were uploaded to ImageJ software and gray level (GL) values were converted to calcium concentrations (weight [wt] % calcium [Ca]) using data obtained with energy dispersive X-ray spectrometry. The following bone mineralization density distribution (BMDD) outcomes were collected: the weighted mean bone calcium concentration (CaMEAN), the most frequently occurring bone calcium concentration (CaPEAK) and mineralization heterogeneity (CaWIDTH). Differences between groups were assessed using the Student's t-test for normally distributed data and Mann–Whitney U-test for non-normally distributed data. An alpha value of <0.05 was considered significant. ResultsThirty-five Caucasian participants were recruited (mean [standard deviation, SD] age, 75.5 [6.5]years): 14 adults with type 2 diabetes (years since type 2 diabetes diagnosis, 13.5 [7.4]years) and 21 adults without type 2 diabetes. In the adults with type 2 diabetes, bone CaMEAN was 4.9% greater (20.36 [0.98]wt.% Ca versus 19.40 [1.07]wt.% Ca, p=0.015) and CaWIDTH was 9.4% lower (median [interquartile range] 3.55 [2.99–4.12]wt.% Ca versus 3.95 [0.71]wt.% Ca, p<0.001) compared to controls. There was no between-group difference in CaPEAK (21.12 [0.97]wt.% Ca for type 2 diabetes versus 20.44 [1.30]wt.% Ca for controls, p=0.121). ConclusionThe combination of elevated mean calcium concentration in bone and lower mineralization heterogeneity in adults with type 2 diabetes may have deleterious effects on the biomechanical properties of bone. These microscopic alterations in bone mineralization, which may be mediated by suppressed bone remodeling, further elucidate higher fracture risk in adults with type 2 diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.