Abstract
Hematopoietic stem cell (HSC) mobilization involves cleavage of ligands between HSC and niche components. However, there are scarce data regarding the role of bone cells in human HSC mobilization. We studied biochemical markers of bone metabolism and angiogenic cytokines during HSC mobilization in 46 patients' sera with lymphoma and multiple myeloma, by ELISA. Significant changes between pre-mobilization and collection samples were found: (1) Bone alkaline phosphatase (BALP) increased, indicating augmentation of bone formation; (2) Receptor activator of Nf-κB ligand/osteoprotegerin ratio (RANKL/OPG) increased, showing osteoclastic differentiation and survival; however, there was no evidence of increased osteoclastic activity; and (3) Angiopoietin-1/Angiopoietin-2 ratio (ANGP-1/ANGP-2) decreased, consistent with vessel destabilization. Poor mobilizers had significantly higher carboxy-terminal telopeptide of collagen type I (CTX) and lower ANGP-1 at pre-mobilization samples, compared to good ones. CTX, amino-terminal telopeptide of collagen type I (NTX) and ANGP-1 pre-mobilization levels correlated significantly with circulating CD34+ peak cell counts. Our results indicate that bone formation and vessel destabilization are the two major events during human HSC mobilization. Osteoblasts seem to be the orchestrating cells, while osteoclasts are stimulated but not fully active. Moreover, ANGP-1, CTX and NTX may serve as predictors of poor mobilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.