Abstract

Intervertebral disc degeneration (IVDD) is the primary cause of low back pain. Stem cell transplantation may be a possible approach to promote IVDD. This study was aimed to investigate the role of bone mesenchymal stem cells (BMSCs) in IVDD and the molecular mechanism. Annulus fibrosus cells (AFCs) were treated with tert-butyl hydroperoxide (TBHP) to induce oxidative stress injury. AFC biological functions were analyzed using a lactate dehydrogenase kit, enzyme-linked immunosorbent assay, flow cytometry, and western blot. The molecular mechanisms of BMSC functions were assessed using quantitative real-time PCR, western blot, immunoprecipitation (IP), co-IP, GST pull-down, and cycloheximide treatment. Furthermore, the impacts of BMSCs in IVDD progression in vivo were evaluated by magnetic resonance imaging (MRI) and H&E analysis. BMSCs inhibited TBHP-induced inflammation and pyroptosis in AFCs. Knockdown of SIRT1 reversed the effects on inflammation and pyroptosis of BMSCs. Moreover, SIRT1 promoted the deacetylation of ASC rather than NLRP3. SIRT1 interacted with ASC to reduce its protein stability, thereby negatively regulating ASC protein levels. In addition, BMSCs alleviated LPS-induced IVDD based on matrix hydrogels. BMSCs inhibited oxidative stress-induced pyroptosis and inflammation in AFCs, thereby alleviating IVDD, suggesting that BMSCs may contribute to treating intervertebral disc generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call