Abstract

ABSTRACT Bone mesenchymal stem cells (BMSCs)-derived exosomes (Exos) play important roles in osteoporosis, while the regulation of microRNA (miR)-21-5p remains unclear. The BMSCs-derived exosomes were isolated from femoral bone marrow of trauma patients, which were then used to stimulate human osteoblasts (hFOB1.19 cells). The miR-21-5p mimic or inhibitor was transfected into BMSCs to overexpress or knockdown miR-21-5p. The functions of miR-21-5p in osteoporosis were assessed by cell counting kit-8 (CCK-8) assay, alkaline phosphatase (ALP) staining and alizarin red staining assays. We found that BMSCs-derived exosomes could enhance proliferation, osteoblastic differentiation and ALP activity of hFOB1.19 cells. BMSCs-derived exosomes with upregulated miR-21-5p could further enhance these protective impacts compared with that in BMSCs-derived exosomes, while BMSCs-derived exosomes with downregulated miR-21-5p reduced these cell phenotypes. MiR-21-5p could directly bind to the 3’-untranslated region (UTR) of Kruppel-like factor 3 (KLF3), and knockdown of KLF3 obviously attenuated these inhibitory effects of BMSCs-derived exosomes with downregulated miR-21-5p on osteoblastic differentiation and ALP activity of hFOB1.19 cells. In summary, BMSCs-derived exosomal miR-21-5p improved osteoporosis through regulating KLF3, providing a potential therapeutic strategy for osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.