Abstract

Genetic factors are thought to maintain bone mass in socioeconomically disadvantaged black South Africans. We compared bone mass between environmentally disadvantaged black and advantaged white children and their parents, after determining the most appropriate method by which to correct bone mineral content (BMC) for size. We collected data from 419 healthy black and white children of mean age 10.6 years (range 10.0-10.9), 406 biological mothers, and 100 biological fathers. Whole-body, femoral neck, lumbar spine, and mid- and distal one-third of radius bone area (BA) and BMC were measured by dual-energy X-ray absorptiometry. Power coefficients (PCs) were calculated from the linear-regression analyses of ln(BMC) on ln(BA) and used to correct site-specific BMC for bone size differences. Heritability (½h(2), %) by maternal and paternal descent was estimated by regressing children's Z scores on parents' Z scores. Correcting BMC for height, weight, and BA(PC) accounted for the greatest variance of BMC at all skeletal sites. In so doing, BMC in blacks was up to 2.6 times greater at the femoral neck and lumbar spine. Maternal and paternal heritability was estimated to be ~30% in both black and white subjects. These results may in part explain the lower prevalence of fragility fractures at the hip in black South African children when compared to whites. Heritability was comparable between environmentally disadvantaged black and advantaged white South African children and similar to that reported for Caucasians in other parts of the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call