Abstract

Cervical cancer poses a serious threat to the health of women and radiotherapy is one of the primary treatment methods for this condition. However, this treatment is associated with a high risk of causing acute hematologic toxicity. Delineating the bone marrow (BM) for sparing based on computer tomography (CT) images before radiotherapy can effectively avoid this risk. Unfortunately, compared to magnetic resonance (MR) images, CT images lack the ability to express the activity of BM. Therefore, medical practitioners currently manually delineate the BM on CT images by corresponding to MR images. However, the manual delineation of BM is time-consuming and cannot guarantee accuracy due to the inconsistency of the CT-MR multimodal images. This study proposes a multimodal image-oriented automatic registration method for pelvic BM sparing. The proposed method includes three-dimensional (3D) bone point clouds reconstruction and an iterative closest point registration based on a local spherical system for marking BM on CT images. By introducing a joint coordinate system that combines the global Cartesian coordinate system with the local point clouds’ spherical coordinate system, the increasement of point descriptive dimension avoids the local optimal registration and improves the registration accuracy. Experiments on the dataset of patients demonstrate that our proposed method can enhance the multimodal image registration accuracy and efficiency for medical practitioners in BM-sparing of cervical cancer radiotherapy. The method proposed in this contribution might also provide a solution to multimodal registration, especially in multimodal sequential images in other clinical applications, such as the diagnosis of cervical cancer and the preservation of normal organs during radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.