Abstract

Stem cell transplantation, especially treatment with bone marrow mesenchymal stem cells (BMSCs), has been considered a promising therapy for the locomotor and neurological recovery of spinal cord injury (SCI) patients. However, the clinical benefits of BMSCs transplantation remain limited because of the considerably low viability and inhibitory microenvironment. In our research, low-intensity pulsed ultrasound (LIPUS), which has been widely applied to clinical applications and fundamental research, was employed to improve the properties of BMSCs. The most suitable intensity of LIPUS stimulation was determined. Furthermore, the optimized BMSCs were transplanted into the epicenter of injured spinal cord in rats, which were randomized into four groups: (a) Sham group (n=10), rats received laminectomy only and the spinal cord remained intact. (b) Injury group (n=10), rats with contused spinal cord subjected to the microinjection of PBS solution. (c) BMSCs transplantation group (n=10), rats with contused spinal cord were injected with BMSCs without any priming. (d) LIPUS-BMSCs transplantation group (n=10), BMSCs stimulated with LIPUS were injected at the injured epicenter after contusion. Rats were then subjected to behavioral tests, immunohistochemistry, and histological observation. It was found that BMSCs stimulated with LIPUS obtained higher cell viability, migration, and neurotrophic factors expression in vitro. The rate of apoptosis remained constant. After transplantation of BMSCs and LIPUS-BMSCs postinjury, locomotor function was significantly improved in LIPUS-BMSCs transplantation group with higher level of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the epicenter, and the expression of neurotrophic receptor was also enhanced. Histological observation demonstrated reduced cavity formation in LIPUS-BMSCs transplantation group when comparing with other groups. The results suggested LIPUS can improve BMSCs viability and neurotrophic factors expression in vitro, and transplantation of LIPUS-BMSCs could promote better functional recovery, indicating possible clinical application for the treatment of SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call