Abstract

After the severe initial insults of acute kidney injury, progressive kidney tubulointerstitial fibrosis may occur, the peritubular capillary (PTC) rarefaction plays a key role in the disease progression. However, the mechanisms of PTC damage were not fully understood and potential therapeutic interventions were not explored. Previous studies of our research team and others in this field suggested that bone marrow-derived mesenchymal stem cells (BMSCs) transplanted into the AKI rat model may preserve the kidney function and pathological changes. In the current study, with the ischemia/reperfusion AKI rat model, we revealed that BMSCs transplantation attenuated the renal function decrease in the AKI model through preserving the peritubular capillaries (PTCs) function. The density of PTCs is maintained by BMSCs transplantation in the AKI model, detachment and relocation of pericytes in the PTCs diminished. Then we established that BMSCs transplantation may attenuate the renal fibrosis and preserve the kidney function after AKI by repairing the PTCs. Improving the vitality of pericytes, suppressing the detachment and trans-differentiation of pericytes, directly differentiation of BMSCs into pericytes by BMSCs transplantation all participate in the PTC repair. Through these processes, BMSCs rescued the microvascular damage and improved the density of PTCs. As a result, a preliminary conclusion can be reached that BMSCs transplantation can be an effective therapy for delaying renal fibrosis after AKI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.