Abstract

BackgroundToll-like receptor 4 (TLR4) plays a critical role in ischemic brain injury by mediating the inflammatory response. The microRNA miR-185-5p suppresses inflammatory signaling by targeting TLR4. This study investigates whether overexpressing miR-182-5p in bone marrow-derived mesenchymal stem cells (BM-MSCs) could potentiate the neuroprotective effects of BM-MSCs in a mouse model of ischemic brain injury. MethodsWe isolated BM-MSCs from mice, transfected the cells with miR-182-5p mimic, determined their MSC lineage through flow cytometry analysis of surface markers, examined miR-182-5p and TLR4 expression levels, and injected them into mice undergone middle cerebral artery occlusion (MCAO). MSC transplanted mice were subjected to behavior assays to determine cognitive and motor functions and biochemical analysis to determine neuroinflammation and TLR4/NF-κB in the ischemic hemisphere. ResultsWe found that BM-MSCs overexpressing miR-182-5p showed reduced TLR4 expression without affecting their MSC lineage. Mice transplanted with miR-182-5p overexpressing BM-MSCs after MCAO showed significantly improved cognitive and motor functions and reduced neuroinflammation, including suppressed microglial M1 polarization, reduced inflammatory cytokines, and inhibited TLR4/ NF-κB signaling. ConclusionOur findings suggest that overexpressing miR-182-5p in BM-MSCs can enhance the neuroprotective effects of BM-MSCs against ischemic brain injury by suppressing TLR4-mediated inflammatory response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.