Abstract

Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 10(6) cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P < 0.001), increases in HGF and MMP-2 mRNA and downregulating CK-19 mRNA. Sliymarin, however, induced similar but less prominent effects compared to BM-MSCs. In conclusion, liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call