Abstract

This study investigated whether cells have an intrinsic ability to recognize nanopatterns, which could lead to their accumulation or diminution on a biomaterial. A multi-patterned “biochip” was made, containing 36 differently designed surfaces, including squares and grooves varying in feature sizes between 10 and 1000nm. The grooved patterns could additionally be subdivided into three groups having ridge to groove ratios of 1:1, 1:3 and 3:1. These substrates were used for culture of rat bone marrow derived mesenchymal cells. In time cells should accumulate on patterns of preference, while migrating away from patterns of disfavor. A regression analysis model was designed for the analysis of the obtained data.Results showed that strong differences existed between the tested patterns regarding the cellular affinity. All sizes of squares showed strong cell-repelling capacity, with the biggest sized squares displaying up to 40% less cells compared to the smooth surface. Among the nano-grooved patterns cell repelling was seen for the grooves with the ridge to groove ratio of 1:3, while grooves with the ridge to groove ratio of 3:1 partially showed cell attraction. Such effects were shown to be based on selective migration rather than proliferation.In conclusion, the use of a multi-patterned biochip setup allows for enhanced evaluation of cell behavior, as compared to uniformly patterned setups. Cells exhibit the ability to actively avoid or migrate to surfaces featuring certain topographies on nanometric scale. Such phenomena may be utilized for the development of biomaterials in regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.