Abstract
Alzheimer's disease (AD) is an age-related degenerative disease of the central nervous system (CNS), whereas the role of bone marrow immune cells in the pathogenesis of AD remains unclear. Here, the study reveals that compared to matched healthy individuals, AD patients have higher circulating grancalcin (GCA) levels, which negatively correlate with cognitive function. Bone marrow-derived GCA+ immune cells, which secret abundant GCA and increase during aging, preferentially invaded the hippocampus and cortex of AD mouse model in a C-C Motif Chemokine Receptor 10 (CCR10)-dependent manner. Transplanting GCA+ immune cells or direct stereotaxic injection of recombinant GCA protein intensified amyloid plaque load and aggravated cognitive and memory impairments. In contrast, genetic ablation of GCA in the hematopoietic compartment improves cognitive and memory function. Mechanistically, GCA competitively binds to the low-density lipoprotein receptor-related protein 1 (LRP1) in microglia, thus inhibiting phagocytosis and clearance of Aβ and potentiating neuropathological changes. Importantly, GCA-neutralizing antibody treatment rejuvenated cognitive and memory function and constrained AD progression. Together, the study demonstrates a pathological role of GCA+ immune cells instigating cognitive and memory decline, suggesting that GCA+ immune cells can be a potential target for innovative therapeutic strategies in AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.