Abstract

BackgroundIn calvarial mice, mesenchymal stem cells (MSCs) differentiate into osteoprogenitor cells and then differentiate into osteoblasts that differentiate into osteocytes, which become embedded within the bone matrix. In this case, the cells participating in bone formation include MSCs, osteoprogenitor cells, osteoblasts and osteocytes. The calvariae of C57BL/KaLwRijHsD mice consist of the following five bones: two frontal bones, two parietal bones and one interparietal bone. This study aimed to analyse some bone marker genes and bone related genes to determine whether these calvarial bones have different bone microenvironments.MethodsC57BL/KaLwRijHsD calvariae were carefully excised from five male mice that were 4–6 weeks of age. Frontal, parietal, and interparietal bones were dissected to determine the bone microenvironment in calvariae. Haematoxylin and eosin staining was used to determine the morphology of different calvarial bones under microscopy. TaqMan was used to analyse the relative expression of Runx2, OC, OSX, RANK, RANKL, OPG, N-cadherin, E-cadherin, FGF2 and FGFR1 genes in different parts of the calvariae.ResultsHistological analysis demonstrated different bone marrow (BM) areas between the different parts of the calvariae. The data show that parietal bones have the smallest BM area compared to frontal and interparietal bones. TaqMan data show a significant increase in the expression level of Runx2, OC, OSX, RANKL, OPG, FGF2 and FGFR1 genes in the parietal bones compared with the frontal and interparietal bones of calvariae.ConclusionThis study provides evidence that different calvarial bones, frontal, parietal and interparietal, contain different bone microenvironments.

Highlights

  • In calvarial mice, mesenchymal stem cells (MSCs) differentiate into osteoprogenitor cells and dif‐ ferentiate into osteoblasts that differentiate into osteocytes, which become embedded within the bone matrix

  • Most C57BL/ KalwRijHsD mice have a monoclonal gammopathy of undetermined significance (MGUS) that is similar to humans

  • The 5TMM series of myeloma models originate from spontaneously developed multiple myeloma (MM) in ageing C57BL/KalwRijHsD mice and have many of the features of the human disease [1,2,3]

Read more

Summary

Introduction

Mesenchymal stem cells (MSCs) differentiate into osteoprogenitor cells and dif‐ ferentiate into osteoblasts that differentiate into osteocytes, which become embedded within the bone matrix. In this case, the cells participating in bone formation include MSCs, osteoprogenitor cells, osteoblasts and osteocytes. C57BL/KalwRijHsD mice develop a high frequency of monoclonal proliferative B cell disorders. The 5TMM series of myeloma models originate from spontaneously developed multiple myeloma (MM) in ageing C57BL/KalwRijHsD mice and have many of the features of the human disease [1,2,3]. Runt-related transcription factor 2 (RUNX2) has been shown to be an essential transcription factor

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.