Abstract

Investment in offspring production often requires the mobilization of endogenous resources, a strategy that may negatively impact maternal condition. In mammals, skeletal ossification in growing offspring requires a large investment of calcium by mothers, and bone loss has been described in several species as a means of supporting this demand. Although bone loss can have adverse effects on the mother, its potential role in a reproductive trade-off has not been addressed. Using white-footed mice (Peromyscus leucopus), we tested the effect of dietary calcium availability on maternal skeletal condition during reproduction to assess if calcium availability drives a trade-off between maternal skeletal condition and offspring production. We provided mice with a low-calcium or standard diet and monitored reproductive output along with changes in bone mineral density and bone resorption (via serum concentrations of pyridinoline cross-links) throughout reproduction. Reproductive performance was not impaired by low calcium intake. Reproductive females on the low-calcium diet showed a significant reduction in bone mineral density relative to reproductive females consuming the standard diet and non-reproductive mice consuming the low-calcium diet, but no difference in bone resorptive activity. Our results suggest that when dietary calcium is limited white-footed mice reproduce at the expense of their skeletal condition, and may do so by limiting bone mineral accretion relative to resorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.