Abstract

In the present work, bone-like nanocomposites have been successfully synthesized based on the mineralization of self-assembled protein-based microgels. Such mircogels were achieved by the in vitro reconstitution of collagen monomeric solutions in the presence of alginate in a microemulsion system. Microstructural observations revealed that the collagen-alginate composite beads possessed a nanofibrous three dimensional (3D) interconnected porous microstructure. The obtained microgels were pre-incubated in calcium-containing solution to capture Ca(2+) ions, and subsequently immersed in phosphate-containing solution to initiate the formation of hydroxyapatite (HA) by an alternative incubating procedure. It was observed that a substantial amount of bone-like apatite nanocrystals were orderly and homogeneously deposited throughout the porous fibrillar networks. Herein, the collagen-alginate composite microgels served as a mineralization template for the synthesis of HA-polymer nanocomposites, which could be ideal vehicles potentially for cell carriers, bone repair and proteins and drugs delivery in tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call