Abstract

Rheumatoid arthritis (RA) affects the hip joints. The microarchitecture of the cancellous bone in RA-affected hip joints has been unclear. Here we investigated the bone metabolism changes in the subcapital cancellous bone of destructive hips of RA patients (n=26 patients; 28 hip joints) which were classified by Larsen grade on X-ray into the groups: destructive hip (Des) (Larsen grade IV, n=18) and neck fracture (Fx) (Larsen grade 0 or 1, n=10). The femoral heads of the Des-group showed significantly higher trabecular thickness versus those of the Fx-group (179±30.8 vs. 151±23.5 μm, p=0.02). The Des-group had significantly higher osteoid volume/tissue volume (OV/TV) and osteoid volume/bone volume (OV/BV) ratios than the Fx-group (OV/TV: 0.72±0.70% vs. 0.27±0.32%, p=0.028; OV/BV: 2.96±2.85% vs. 1.24±1.31%, p=0.039). The osteoblast and osteoclast surface areas of the Des-group were remarkably higher than those of the Fx-group (9.80±10.9 vs. 0.15±0.15%, p=0.0005; 0.34±0.48 vs. 0.06±0.06%, p=0.0285, respectively). The T-scores of hip (femoral neck) bone mineral density (BMD) of the Fx-group were significantly lower versus those of the Des-group (-3.1±0.76 vs. -1.6±1.17, p<0.01). Increased osteoid and resorption parameters and higher femoral neck BMD demonstrate a high bone-turnover state in response to destructive changes in the hips of RA patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call