Abstract

To evaluate bone regeneration in alveolar defects treated with human umbilical cord-derived mesenchymal stem cells (hUCMSCs), hydroxyapatite/chitosan/gelatin (HA/CS/Gel) scaffold, and bone morphogenic protein-2 (BMP-2) in Capra hircus models. Randomized posttest-only control group design. Animal Hospital at Bogor Agricultural Institute. Healthy and equally treated 24 female Capra hircus/goats. Animals were randomly assigned to 3 experimental group design (iliac crest alveolar bone graft/ICABG [control], HA/Cs/Gel+BMP-2 [Novosys], and HA/Cs/Gel+BMP-2+UCMSCs). Graft materials were implanted in surgically made alveolar defects. Postoperative functional score and operating time were assessed. New bone growth, bone density, inflammatory cells recruitment, and neoangiogenesis were evaluated based on radiological and histological approach at 2 time points, week 4 and 12. Statistical analysis was done between treatment groups. Operating time was 34% faster and functional score 94.5% more superior in HA/Cs/Gel+BMP-2+hUCMSC group. Bone growth capacity in HA/Cs/Gel+BMP-2+UCMSCs mimicked ICABG, but ICABG showed possibility of bone loss between week 4 and 12. The HA/Cs/Gel+BMP-2+UCMSCs showed early bone repopulation and unseen inflammatory cells and angiogenesis on week 12. The HA/Cs/Gel+BMP-2+hUCMSCs were superior in enhancing new bone growth without donor site morbidity compared to ICABG. The presence of hUCMSCs in tissue-engineered alveolar bone graft (ABG), supported with paracrine activity of the resident stem cells, initiated earlier new bone repopulation, and completed faster bone regeneration. The HA/Cs/Gel scaffold seeded with UCMSCs+BMP-2 is a safe substitute of ICABG to close alveolar bone defects suitable for patients with cleft lip, alveolus, and palate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call