Abstract

Clinical prediction of bone fracture risk primarily relies on measures of bone mineral density (BMD). BMD is strongly correlated with bone strength, but strength is independent of fracture toughness, which refers to the bone's resistance to crack initiation and propagation. In that sense, fracture toughness is more relevant to assessing fragility-related fracture risk, independent of trauma. We hypothesized that bone biochemistry, determined by Raman spectroscopy, predicts bone fracture toughness better than BMD. This hypothesis was tested in tumor necrosis factor-transgenic mice (TNF-tg), which develop inflammatory-erosive arthritis and osteoporosis. The left femurs of TNF-tg and wild type (WT) littermates were measured with Raman spectroscopy and micro-computed tomography. Fracture toughness was assessed by cutting a sharp notch into the anterior surface of the femoral mid-diaphysis and propagating the crack under 3 point bending. Femoral fracture toughness of TNF-tg mice was significantly reduced compared to WT controls (p=0.04). A Raman spectrum-based prediction model of fracture toughness was generated by partial least squares regression (PLSR). Raman spectrum PLSR analysis produced strong predictions of fracture toughness, while BMD was not significantly correlated and produced very weak predictions. Raman spectral components associated with mineralization quality and bone collagen were strongly leveraged in predicting fracture toughness, reiterating the limitations of mineralization density alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.