Abstract

Bone fracture healing is a complex process which is still under research. Computer-aided patient-specific prediction of bone development, fracture risk, prevention and treatment approaches promises a significant milestone in clinical practice. With this long-term goal in mind, a novel model is presented and examined in this work in the context of continuum bone remodelling. Therein, a clear distinction is made between external mechanical stimulation and the biological healing process of an injured bone tissue. The model is implemented within a finite element framework and investigated for the example of a fractured proximal femur head. The results show promising perspectives for further application. Besides, the model offers the possibility of easily integrating other factors like age-dependency and the availability of nutrition. For the future, further studies with large clinical datasets are essential for validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.