Abstract

Magnetic resonance microscopy (MRM) and X-ray microtomography (XMT) were used to investigate de novo bone formation in porous poly(ethyl methacrylate) (PEMA) scaffolds, prepared by a novel co-extrusion process. PEMA scaffolds were seeded with primary chick calvarial osteoblasts and cultured under static conditions for up to 8 weeks. Bone formation within porous PEMA scaffolds was confirmed by the application of histologic stains to intact PEMA disks. Disks were treated with Alizarin red to visualize calcium deposits and with Sirius red to visualize regions of collagen deposition. DNA analysis confirmed that cells reached confluence on the scaffolds after 7 weeks in static culture. The formation of bone in PEMA scaffolds was investigated with water proton MRM. Quantitative MRM maps of the magnetization transfer ratio (MTR) yielded maps of protein deposition, and magnetic resonance (MR) relaxation times (T1 and T2) yielded maps of mineral deposition. The location of newly formed bone and local mineral concentrations were confirmed by XMT. By comparing MRM and XMT data from selected regions-of-interest in one sample, the inverse relationship between the MR relaxation times and mineral concentration was validated, and calibration curves for estimating the mineral content of cell-seeded PEMA scaffolds from quantitative MRM images were developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call