Abstract

A new damage-adaptive bone remodeling model, in which an algorithm incorporating both strain and damage stimuli, is developed in this paper. Typically, a human proximal femur model is established to predict the bone mass distribution during bone remodeling process. And human physiology damage-repair cycle is considered in the model. The governing equations of the mathematical model, digesting the predecessors’ ideas, are numerically solved and implemented into ANSYS software via the user interface of finite element algorithm. With the aid of this novel model, the whole healing behavior of human proximal femur is elucidated properly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.