Abstract

Senescence marker protein-30 (SMP30) decreases androgen-independently with aging and is a lactone-hydrolyzing enzyme gluconolactonase (GNL) that is involved in vitamin C biosynthesis. In the present study, bone properties of SMP30/GNL knockout (KO) mice with deficiency in vitamin C synthesis were investigated to reveal the effects of SMP30/GNL and exogenous vitamin C supplementation on bone formation. Mineral content (BMC) and mineral density (BMD) of the mandible and femur of SMP30/GNL KO and wild-type mice at 2 and 3 months of age with or without vitamin C supplementation were measured by dual-energy X-ray absorptiometry. Body and bone weight of both age groups decreased and became significantly lower than those of wild-type mice. The bones of SMP30/GNL KO mice were rough and porous, with BMC and BMD significantly below wild-type. Oral supplementation with vitamin C eliminated differences in body weight, bone weight, BMC, and BMD between SMP30/GNL KO and wild-type mice at each age. These results indicate that bone degeneration in SMP30/GNL KO mice was caused by lack of vitamin C, and that this mouse strain is an appropriate model for bone metabolism in humans, which have no ability to synthesize vitamin C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.