Abstract

ABSTRACT 1. This study determined the effect of dietary Zn concentration and source in phytase-supplemented diets on bone mineralisation, gastrointestinal phytate breakdown, mRNA-level gene expression (in jejunum, liver and Pectoralis major muscle) and growth performance in broiler chickens. 2. Male Cobb 500 broilers were housed in floor pens (d 0-d 21) to test seven treatments with six replicate pens (12 birds per pen). Diets were arranged in a 2 × 3 + 1-factorial arrangement. The experimental factors were Zn source (Zn-oxide (ZnO) or Zn-glycinate (ZnGly) and Zn supplementation level (10, 30 or 50 mg/kg of diet). A maize-soybean meal-based diet without supplementation and formulated to contain 28 mg Zn/kg (analysed to be 35 mg Zn/kg), served as a control. 3. Zinc source and level did not influence (p > 0.05) bone ash concentration and quantity or mineral concentrations in bone ash. Tibia thickness was greater in the treatment ZnO10 than in the treatments ZnO30 and ZnGly50 (Zn level × Zn source: p = 0.036), but width and breaking strength were not affected. 4. Pre-caecal P digestibility and concentrations of phytate breakdown products in the ileum, except for InsP5, were not affected by Zn source or level. Only the expression of EIF4EBP1 (eukaryotic translation initiation factor 4E-binding protein 1) and FBXO32 (F-box only protein 32) in Pectoralis major muscle was affected by source, where expression was increased in ZnO compared to ZnGly diets (p < 0.05). 5. In conclusion, Zn level and source did not affect gastrointestinal phytate degradation and bone mineralisation in phytase-supplemented diets. The intrinsic Zn concentration appeared to be sufficient for maximum bone Zn deposition under the conditions of the present study but requires validation in longer-term trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call