Abstract

The bone bonding ability of three types of bioactive bone cement A, B, and C consisting of glass or glass ceramic powder and bisphenol-alpha-glycidyl methacrylate resin was evaluated. Type A contained MgO-CaO-SiO2-P2O5-CaF2 glass powder; Type B, MgO-CaO-SiO2-P2O5-CaF2 glass ceramic powder; and Type C, MgO free CaO-SiO2-P2O5-CaF2 glass powder. Rectangular plates (2 x 10 x 15 mm) of Types A, B, C, and polymethylmethacrylate cements were implanted into the tibial metaphyses of male rabbits and the failure load measured by mechanical failure testing (detaching test) 10 and 25 weeks after implantation. The failure loads of Types A, B, C, and polymethylmethacrylate cements were respectively, 29.52, 41.48, 28.22, and 0.29 N at 10 weeks and 33.42, 41.27, 33.64, and 0.20 N at 25 weeks. Examination of the bone cement interface revealed that all the bioactive bone cements achieved direct bone contact with the bone. These results showed that all three types of bioactive bone cement have the ability to bond to bone, and the cement containing glass ceramic powder revealed higher bonding strength than did those containing glass powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.