Abstract

ABSTRACT This study estimated upper and lower limb bone mineral content (BMC) and bone area (BA) in 48 children tennis players (24 boys, 24 girls) aged 7–13 years. The sample comprised four age groups (8.2 ± 0.44, 9.5 ± 0.13, 10.5 ± 0.33, 12.2 ± 0.58). BMC and BA were measured via DXA, and sexual maturity by the Tanner scale, then used as a binary: prepubertal vs peripubertal. Total training time (TTT) included all playing years. Arms were asymmetric and legs symmetric. Boys were more asymmetric than girls in BMC (18% vs 13%) and BA (11% vs 8%). Pre-pubertal children were less asymmetric than peri-pubertal in BMC (14% vs 18%) and in BA (9.4% vs 10%). Bone growth changed with age and TTT markedly better in the dominant arm. The linear combination of TTT, sex, and maturity binary extracted 59% of BMC asymmetry and only 21% of BA asymmetry. For both bone parameters the sex effect was significant only for the pre-pubertal children. Training time constitutes the best predictor of bone asymmetry compared to age, sex, and maturity; when adequate, playing arm bone hypertrophy may be detectable at the age of 7–8 years. These results have health and performance implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call