Abstract

Bone anchors (or suture anchors) are used to provide attachment points for sutures to connect tissue such as tendons or ligaments to bone, and work by engaging a threaded portion—sometimes tapered—to the cancellous and/or cortical bone. Such repair is often needed after trauma, or as part of reconstructive surgery. This paper uses the finite element method to compare the pullout characteristics of one common type of bone anchor in different cancellous bone structures. Finite element models are created by using computed tomography (CT) scans of cancellous bone and building computer-aided design (CAD) models to define the cancellous bone geometry. Orthopedic surgeons will sometimes remove parts of the cortical shell and this paper also examines the mechanical effects of decortication. Furthermore, the importance of the connection between anchor and cortical layer is examined. One of the key outcomes from the model is that the coefficient of friction between bone and anchor determines potential mechanisms of pullout. The stiffness of anchors and the effect of the cortical layer are presented for different pullout angles to obtain the theoretical response. The results show the detailed modeling that includes the micro-architecture of the cancellous bone is necessary to capture the large variations that can exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call