Abstract

Computer assisted surgical interventions and research in joint kinematics rely heavily on the accurate registration of three-dimensional bone surface models reconstructed from various imaging technologies. Anomalous results were seen in a kinematic study of carpal bones using a principal axes alignment approach for the registration. The study was repeated using an iterative closest point algorithm, which is more accurate, but also more demanding to apply. The principal axes method showed errors between 0.35 mm and 0.49 mm for the scaphoid, and between 0.40 mm and 1.22 mm for the pisiform. The iterative closest point method produced errors of less than 0.4 mm. These results show that while the principal axes method approached the accuracy of the iterative closest point algorithm in asymmetrical bones, there were more pronounced errors in bones with some symmetry. Principal axes registration for carpal bones should be avoided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.