Abstract

Using a laser for cutting bones instead of the traditional saws has been shown to improve a patient’s healing process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue if appropriately applied. This can be achieved by building additional sensing elements besides the laser itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shock wave that is captured by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth of the cut during the ablation process.We use a Neural Network (NN) to approximate the depth, where we use one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and compared against the ground-truth depth measurements from Optical Coherence Tomography (OCT) images that measure the depth in real-time during the ablation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.